Assessment for management o	f zinc	deficiency	in	lowland	rice
-----------------------------	--------	------------	----	---------	------

Problem	Lower yield in rice due to high mortality and higher succeptibity to disease incidence
Season	Kharif
Farming Situation	Rainfed, low land, Transplanted rice

Objective	To reduce the mortality percentage of rice and to enhance the cost of cultivation.
Source of technology	Source: AICRP on micronutrient and Pollutant, OUAT, 2016

Technology Assessed:

FP: No micronutrient application in deficient soil

TO1: Soil Test Based Recommendation of NPK+ Zinc Sulphate @ 25 kg/ha

TO2: STBR of NPK + 5t FYM /ha + Zinc Sulphate @ 12.5 kg/ha

Variety: Pratikhya

Assessment of sheath blight management in rice		
Problem	Low yield in paddy due to severe sheath blight incidence	
Season	Kharif (Var.	
Farming Situation	Irrigated medium land rice pulse cropping system	
Objective	To reduce effect of Sheath blight incidence	
Source of technology	DRR, Hyderabad, 2017	
	SLREC Proc. 2018 RRTTS, Chiplima	

Technology Assessed:

FP: Spraying of Hexaconazole 5%EC @ 1.5ml/ltr. Of water only once.

TO1: Seed treatment with thiophanate methyl @ 1.5gm/kg of seed and alternate spraying of Trifloxystrobin 25% + Tebuconazole 50%WG @ 200gm/ha and Thifluzamide 24%SC @ 500ml/ha from the appearance of the disease.

TO2: Seed treatment with carboxin 37.5%+ thiram 37.5% @ 1.5 gm/kg of seed and alternate spraying of Propiconazole 13.9EC + Difenconazole 13.9EC @ 500ml/ha and Azoxystrobin 23%SC @ 500ml/ha at 15 days interval.

Assessment on brinjal varieties for wilt resistance		
Problem	Low yield due to wilt incidence in kharif upland	
Season	Kharif	
Farming Situation	Upland	
Objective	To reduce wilt incidence by assessment of suitable variety	
Source of technology	IIHR, 2018	

Technology Assessed:

FP: Cultivation of variety VNR-212, Kutmenda local

TO1:Arka Neelkanth-

Tall and compact plants bearing small fruits in clusters. Fruits are tender with slow seed maturity and low bitter principle. Resistant to bacterial wilt. Duration-150 days. Yield- 43t/ha

TO2:Arka Keshav-

Tall & branched plants bearing long fruits in clusters. Red purple glossy fruit skin with green calyx. Fruits are tender with slow seed maturity and low bitter principle. Resistant to bacterial wilt. Duration-150 days, 5t/ha